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Abstract

This study investigates how artificial neural network
(ANN) complexity evolves in response to varying en-
vironmental parameters within artificial life (A-life)
simulations. By systematically evolving grid-world
environments that include agents, predators, and re-
source constraints, we aim to identify specific envi-
ronmental factors that maximize neural network com-
plexity, measured by the number of network weights.
Using a meta-evolution approach (gaSpecs), we op-
timize environments across two criteria: maximizing
agent survival time and a combination of agent sur-
vival time and neural network complexity. Results
from extensive simulations indicate distinct environ-
mental parameter sets significantly influencing ANN
complexity and agent survival, providing insights into
how environmental pressures drive neural complexity
in artificial systems.

1 Introduction

Understanding how environmental factors influence
the evolution of neural complexity is essential for
both evolutionary biology and artificial intelligence
research. A fundamental question in evolutionary bi-
ology and artificial intelligence is how environmen-
tal factors shape the complexity of neural systems.
Previous research has highlighted that changes in en-
vironmental conditions can significantly impact the
evolution of neural architectures. However, the ex-
act environmental pressures that foster more complex
neural systems remain unclear.

In this study, we use artificial life (A-life) environ-
ments to investigate how varying environmental pa-
rameters influence the complexity of artificial neural

networks (ANNs) controlling simulated agents. By
evolving environments to incorporate factors such as
predators, resource limitations, and reproductive dy-
namics, we aim to identify the environmental condi-
tions most conducive to increased neural complexity.
Our findings aim to enhance understanding of how
complex neural architectures evolve, offering insights
applicable to both artificial and biological systems.

2 Problem Formulation

To perform our analysis, we use an extended version
of Vadim Bulitko’s artificial life (A-life) testbed with
the addition of predators. The environment is a grid
map where each grid tile represents a different terrain.
This terrain includes grass tiles that agents can feed
from and wall tiles that agents and predators cannot
occupy. The world progresses in discrete time steps
in which grass regrows and every agent and predator
on the map performs an action simultaneously.

Each agent has several actions available to them,
including moving left, up, right, down, or staying in
place. Agents stay alive by feeding on grass tiles to in-
crease their energy to a maximum value of one and die
if their energy reaches zero. Every agent has an ANN,
which acts as their brain and determines the action
an agent takes. The environment is initialized with a
population of agents whose ANN structures are ran-
domly chosen. These networks are composed of an
input layer, 0-2 convolution layers each followed by a
batch normalization layer and a ReLU layer, 0-2 fully
connected layers each followed by a ReLU layered,
and finally, a fully connected layer followed by a soft-
max function. During an A-life trial, agents can give
birth to offspring who have a chance to inherit the
same ANN structure with weights randomly changed
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or to inherit a new randomly generated structure and
weights.
As an extension to the A-life testbed, we imple-

mented predators that serve as a hazard to agents.
Like agents, predators have energy that decreases
over time. Instead of eating grass to replenish their
energy, predators must kill agents. At every time
step, each predator calculates the Euclidean distance
to all agents and moves toward the closest one. How
many tiles a predator moves is determined by the en-
vironmental predator speed. If a predator occupies
the same tile as an agent, the agent is killed immedi-
ately, and the predator’s energy increases.
We define the complexity of an agent’s network

C(N) as the number of weights in the network N .
The goal of this study is to determine how environ-
ment parameters P outlined in Table 1 interact to
affect network complexity and, more specifically, how
they can be tuned to maximize complexity. Formally,
we aim to find

max
P

1

T

T

∑

i=1

C(Ni)

where T is the number of networks tested in an envi-
ronment.

3 Related Work

The evolution of complex behaviour in artificial
agents has been explored through various frame-
works. One foundational contribution is by Gomez
and Miikkulainen (1997), who introduced an incre-
mental learning approach where agents first learn
to solve simpler tasks, increasing task difficulty over
time. They proposed delta coding, a technique that
improves the transfer of learned knowledge between
tasks during evolution. However, their framework
does not address dynamically changing environments
and does not explore how specific environmental pa-
rameters can influence the complexity of evolved
ANNs—an essential gap our work aims to fill.
Calvin (2002) proposed a biological theory linking

abrupt climate change to increased brain complex-
ity in humans. While the work provides a valuable
conceptual framework, it does not include a computa-
tional model to test the relationship experimentally.
This study builds on that foundation by extending a
controlled artificial life simulation, allowing for ma-
nipulation of environmental conditions and direct ob-
servation of their effects on neural network complex-
ity in evolving agents.

4 Proposed Approach

To investigate how environmental factors influence
agent brain complexity, we extended the artificial life
(A-life) testbed with a predator-prey model. Each
agent is controlled by an artificial neural network
(ANN), whose complexity is measured by the total
number of weights. Agents with larger networks con-
sume more energy per decision step, encouraging se-
lective pressure against unnecessarily large architec-
tures.

To study the effects of environmental variation, we
manipulated a set of environmental parameters that
direct agent behaviour and survival. These include
mutation chance, movement energy cost, and repro-
duction age. These parameters were chosen based on
their potential to affect both selective pressure and
population dynamics (as detailed in Table 1).

We used the gaSpecs meta-evolution framework to
evolve environments by optimizing a fitness function.
We tested three optimization objectives:

1. Extinction time, promoting environments
where agents survive longer.

2. Neural network complexity, to encourage
larger ANN architectures.

3. A combination of extinction time and net-
work complexity.

While all three were explored, the complexity-only
objective frequently led to unstable populations that
died off early, limiting meaningful comparisons. Con-
sequently, we excluded this condition from our formal
evaluation and focused on the extinction-only and
combined objectives. For each evolved environment,
we conducted 64 trials and recorded extinction times
and ANN statistics, enabling us to assess how differ-
ent parameter configurations influence agent survival
and brain complexity.

5 Theoretical Analysis

We define the brain complexity of an agent as the
total number of weights in its artificial neural network
(ANN). Formally, for a network N , the complexity is
given by:

C(N) =∑
l∈L

weights(l)

where L is the set of layers in the network. This
definition captures both the size and structure of the
ANN.
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To study how environmental conditions affect this
complexity, we optimize a set of environment param-
eters P using a meta-evolutionary algorithm. The
goal is to find the environment configurations that
maximize one of the following fitness objectives:

(1) Extinction Time:

max
P

E(A)

where E(A) is the average extinction time of a pop-
ulation of agents in environment P .

(2) ANN Complexity:

max
P

1

T

T

∑

i=1

C(Ni)

where T is the number of trials and Ni is the ANN
of the i-th agent.

(3) Combined Objective:

max
P

E(A) +
1

T

T

∑

i=1

C(Ni)

These objectives are used to evolve different envi-
ronments and evaluate their effect on an agent’s brain
complexity. We hypothesize that environments opti-
mized for extinction time will favor more adaptive
behaviour and longer survival, while those optimized
for complexity may favor larger networks. However,
as observed in our experiments, optimizing for com-
plexity alone can destabilize populations, suggesting
a potential trade-off between complexity and survival.
Due to the stochastic nature of agent interactions

and reproduction, closed-form theoretical analysis is
not sufficient to predict the outcomes of environmen-
tal changes. Therefore, we rely on empirical evalua-
tion to observe how these optimization criteria influ-
ence ANN evolution in practice.

6 Empirical Evaluation

Figure 1 shows the evolution of agent brain complex-
ity under two different environments. The first is
optimized for extinction time, and the second is opti-
mized for a combination of extinction time and ANN
complexity. In the combined environment, we ob-
serve a larger mean ANN size when compared with
the extinction-optimized environment. This indicates

that agents in the combined environment are more
complex on average, though the underlying reason
for this is unclear. From the same figure, we can
see that on average, populations in the combined en-
vironment survived longer than the extinction-only
environment. This could indicate that the environ-
ment itself is easier or that more complex agents are
better equipped to survive for longer.

Figure 2 shows the same environments and trials
as Figure 1, but only includes agents that lived for
longer than 20 time steps. This is done in an effort
to remove extraneous data from poorly performing
agents, in this case those that lived for only 20 time
steps or less, to not skew the mean ANN size. After
removing these agents we can see that the difference
in mean ANN size between the two environments is
roughly halved. The reduced difference in mean com-
plexity indicates that more complex ANNs do not
survive as long as ANNs with less complex networks.
As a result, we can infer that the environment itself
is easier. This, in addition to our observations from
Figure 1, shows that more complex networks do not
offer any additional benefit and could be harmful.

Examining Table 1 offers additional insight into
why the combined environment has a longer extinc-
tion time and more complex agents. Some differ-
ences between parameters are the structure mutation
chance, move energy, max bite, min reproduction en-
ergy, and mutations.

We see that the move energy is lower and the max
bite is higher in the combined environment. This
means that agents can eat more grass to replenish
energy and lose less energy when moving, indicating
that the environment is easier to survive in. Since
agents with more complex networks use additional
energy to make decisions, we believe that these eas-
ier conditions are more favourable for the survival of
complex networks. The lower mean complexity in the
seemingly more difficult extinction environment can
then be attributed to the energy costs of complex net-
works outweighing the additional computing power
they provide. This result is contrary to our expecta-
tions, and more work needs to be done to determine
what conditions necessitate complex networks.

Looking at other parameter differences, such as the
lower min reproduction energy, higher structure mu-
tation chance, and higher mutation count in the com-
bined environment, allows us to infer why this en-
vironment has higher mean complexity. The lower
min reproduction energy means that agents can re-
produce even when they are close to death, which is
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gaSpecs extinction/extinction+complexity j 64 trials 5 [1.0 h,1.0 h] j All Agents
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Figure 1: Comparison between environments evolved to promote long trial extinction times and a combina-
tion of long trial extinction times plus network complexity. The extinction time of each trial is on the left,
while the ANN sizes of agents measured as the number of weights is on the right. Data includes all agents
in all trials regardless of age at death.

beneficial to more complex agents who use more en-
ergy. The higher structure mutation chance means
that less complex agents are more likely to give birth
to complex agents rather than replicating their own
structure. This ability to reproduce more often and
create different structures is likely the reason for the
higher mean complexity. The results from Figure 2
indicate that high-complexity structures often die be-
fore reproduction age, so less complex agents birthing
more complex ones increases mean complexity.

7 Discussion

Our experiments show that the environment parame-
ters used during evolution influence both the survival
and neural network complexity of agents. When en-
vironments were evolved using a combined objective
(extinction time and ANN complexity), we observed
higher average network sizes compared to extinction-
focused environments. This supports the idea that
encouraging both survival and complex behaviour can
lead to larger networks.
Environments optimized only for complexity led to

unstable populations. Agents often failed to survive

long enough to develop meaningful changes, high-
lighting a limitation of using complexity as the sole
fitness signal. This trade-off between network size
and survival suggests that complexity must be paired
with some form of performance-based feedback to be
useful in evolution.

We also observed differences in complexity across
environments, but the reasons for these differences
remain unclear. Since we only measured the number
of network weights, our current metric may not cap-
ture other important aspects of brain function, such
as learning ability or behavioural diversity.

These results suggest that environmental design
plays an important role in shaping the evolution of
neural architectures, but further analysis is needed to
understand the underlying dynamics.

8 Future Work

There are several directions we plan to explore in fu-
ture work. First, we aim to run longer trials with
more generations and a wider range of parameter set-
tings. This may help us observe more stable patterns
in complexity growth and better understand long-
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gaSpecs extinction/extinction+complexity j 64 trials 5 [1.0 h,1.0 h] j Life Expectancy > 20
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Figure 2: Comparison between environments evolved to promote long trial extinction times and a combina-
tion of long trial extinction times plus network complexity. The extinction time of each trial is on the left,
while the ANN sizes of agents measured as the number of weights is on the right. Data includes only agents
with an age greater than 20 at death.

term evolutionary dynamics.
Second, we plan to expand the ANN search space

to include deeper and more varied network architec-
tures. Allowing more layers could enable the evolu-
tion of more sophisticated behaviours.
Third, we intend to add communication capabil-

ities to agents. This could involve creating a new
output channel for communication or introducing a
separate communication-specific network. Studying
how communication affects group behaviour and neu-
ral complexity may reveal new forms of emergent be-
haviours.
Finally, we plan to explore new ways to measure

complexity beyond just the number of weights. These
could offer a more complete view of how complex and
adaptive the evolved agents truly are.

9 Conclusions

In this project, we studied how the complexity of
an agent’s brain, represented by its neural network,
changes in response to different types of environ-
ments. Our goal was to understand whether certain
environmental conditions encourage the evolution of

more complex brains.

We used an extended A-life simulation with preda-
tors and evolving environmental parameters. By test-
ing different fitness objectives, we found that envi-
ronments optimized for both survival and brain com-
plexity tended to produce agents with more complex
neural networks.

Overall, our results show that environmental fac-
tors play an important role in how neural networks
evolve. Encouraging both survival and complexity
appears to support the development of more complex
agent behavior.
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Table 1: Environment parameters evolved for Extinction and Extinction+Complexity environments

Environment Extinction Extinction+Complexity
Grass Growth 0.0333 0.0333
Grass Decay 0.996 0.996
Structure Mutation Chance 0.1533 0.3744
Channels 3 3
Radius 1 1
Move Energy 0.0446 0.0333
Live Energy 0.1 0.1
Power Coefficient 0.0001 0.0001
Max Bite 0.2309 0.2702
Min Reproduction Energy 0.5432 0.2080
Min Reproduction Age 20 20
Initial Agents 14 15
Max Agents 20 20
Mutations 32 49
predator count 0 0
predator speed 3 2
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